
Vision-based control of UR5 robot to track a moving object
under occlusion using Adaptive Kalman Filter
K. Ramachandruni∗

S. Jaiswal∗
ramachandruni.1@iitj.ac.in

jaiswal.1@iitj.ac.in
Mechanical Engineering Department
Indian Institute of Technology Jodhpur

Jodhpur, Rajasthan, 342037 India

S. V. Shah
surilshah@iitj.ac.in
Assistant Professor,

Mechanical Engineering Department
Indian Institute of Technology Jodhpur

Jodhpur, Rajasthan, 342037 India

ABSTRACT
This paper presents a robust method to track a moving object under
occlusion using an off-the-shelf monocular camera and a 6 Degree
of Freedom (DOF) articulated arm. The visual servoing problem of
tracking a known object using data from a monocular camera can
be solved with a simple closed loop controller. However, this system
frequently fails in situations where the object cannot be detected
and to overcome this problem an estimation based tracking system
is required. This work employs an Adaptive Kalman Filter (AKF) to
improve the visual feedback of the camera. The role of the AKF is to
estimate the position of the object when it is occluded/out of view
and remove the noise and uncertainties associated with visual data.
Two estimation models for the AKF are selected for comparison and
among them, theMean-Adaptive accelerationmodel is implemented
on a 6-DOF UR5 articulated arm with a monocular camera mounted
in eye-in-hand configuration to follow the known object in 2D
cartesian space (without using depth information).

CCS CONCEPTS
• Computer systems organization→ Robotic control.

KEYWORDS
Adaptive Kalman Filter, Visual Servoing, Target following, Robotic
arm

1 INTRODUCTION
Moving object tracking is an important problem as it is required
in many systems such as mass production and fully automated
factories, where pick-and-place and assembly operations of vari-
ous components are required on the assembly line and sports and
wildlife filming, where fast moving targets need to be followed and
recorded accurately. The tracking problem can be solved using data
from a variety of sensors like thermal/IR cameras, stereo cameras
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AIR ’19, July 2–6, 2019, Chennai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6650-2/19/07. . . $15.00
https://doi.org/10.1145/3352593.3352675

(depth or disparity maps), or monocular cameras (raw pixel data).
The advantage of using raw pixel data is that it can be obtained
from a simple monocular camera and standard image processing
methods can be used to easily detect the object andmeasure its state.
However, in the visual servoing problem, where visual feedback
is used to control a robot, this raw data cannot be used directly,
especially when the position error of the object to be tracked is
large. This might lead to severe oscillations and jerky motions of the
follower robot which is undesirable. Hence, a closed loop controller
is required for fast and accurate visual servoing.
A problem which arises with general closed-loop controllers in
noisy and occluded environments is the frequent loss of detection
which causes abrupt stopping of the robot. To improve the per-
formance of these controllers in such situations, a Kalman Filter
is generally used to estimate and correct the state data. The use
of a Kalman filter along with a suitable motion model allows the
system to provide reliable state data even in situations of occlu-
sion/no visibility of the object. Among the known visual servoing
techniques(Position based Visual Servoing (PBVS) and Image based
Visual Servoing (IBVS)), the IBVS method is simpler as it defines
the current and desired positions of the target in pixel coordinates
(u,v) and does not need any information about the pose of the
camera. In addition to a naive implementation of a closed-loop
controller for object tracking such as a PD/PID controller, many
additional methods have been applied to make the system more
robust. Of these methods, Kalman filter is a common choice for
object tracking problems in many contexts. [1] used an Extended
Kalman filter (Kalman filter for non-linear models) with uncon-
strained brownian motion model for object tracking from visual
data. Other papers such as [2] and [3] use Adaptive Kalman filters
(AKFs), where the estimation parameters are adjusted according
to the current motion. [2] uses a constant velocity model to model
the AKF while [3] uses a zero mean acceleration model known as
Singer model. Other mathematical models were presented in [4] to
use for tracking moving targets.
The problem tackled in this paper is to follow a moving object
(object known to us) in a noisy and cluttered environment using a
6 Degree of Freedom (DOF) articulated arm with an attached visual
sensor. The sensor is an off-the-shelf USB monocular camera at-
tached in an eye-in-hand configuration (attached to the end-effector
of the arm) and the object is freely moving in 2D cartesian space
(no depth information measured). It is assumed that image coordi-
nates of the object can be easily extracted and hence the current
solution does not try to tackle the issue of feature extraction. The

https://doi.org/10.1145/3352593.3352675

AIR ’19, July 2–6, 2019, Chennai, India K. Ramachandruni, S. Jaiswal, and S. V. Shah

visual servoing system explained in this paper uses a PD controller
coupled with an Adaptive Kalman Filter (AKF).
The first half of this paper describes the controller being used in
visual servoing for tracking an object and following it using the
UR5 robotic arm. The second half explains the development of a
robust state estimator for aiding the visual servoing problem using
an Adaptive Kalman Filter (AKF). Two motion models which are
selected for the AKF are compared and the more suitable one is
implemented on the UR5 arm. Implementation results are presented
and discussed in the latter sections.

2 FEATURE EXTRACTION AND GEOMETRY
Vision-based control methods try to minimize the error es between
the current image feature of an object st and its desired feature value
s∗. Here, Image based Visual Servoing (IBVS) is used along with
an eye-in-hand monocular camera system to do the same. Image
features are measured in the image plane using color thresholding
and blob detection and tracking is done using an appropriate control
law. The object considered for tracking is a 2-D circular object of a
known color which is assumed to be moving in a fixed plane parallel
to the camera frame. This section provides some background on
the image processing and feature transformation techniques used
to do the same.

2.1 Feature extraction from Image
For this problem, a green circular cap is being used as the known
target. Feature extraction is implemented using the OpenCV li-
brary [5] of Python to perform blob detection. Color thresholding
is done based on the HSV (Hue, Saturation, Value) range of object
in order to form a blob and further thresholds are applied based on
area, circularity and convexity to eliminate background noise. The
center of the blob (u, v) and area are obtained in pixel coordinates,
which are the final image features.

2.2 Camera Model and Interaction Matrix
Using the pin-hole camera model, an interaction matrix L(s,a) can
be defined that relates the camera velocity ξ to the image feature
velocity vector Ûs as follows:

[
Ûu
Ûv

]
=

[
− λ
z 0 u

z
uv
z − λ2+u2

λ v

0 − λ
z

v
z

λ2+u2

λ −uv
z −u

]

vx
vy
vz
ωx
ωy
ωz

(1)

This can also be written as:

Ûs = L(s,q)ξ , where Ûs =

[
Ûu
Ûv

]
, ξ =

vx
vy
vz
ωx
ωy
ωz

, (2)

L(s,q) =

[
− λ
z 0 u

z
uv
z − λ2+u2

λ v

0 − λ
z

v
z

λ2+u2

λ −uv
z −u

]

As depth information (z cartesian coordinate) cannot be directly
measured using a monocular camera, the target object (fixed size)
was used to obtain a correlation between the pixel area of blob
and the object distance from camera in Cartesian space. This ap-
proximation is, however, only valid in the case of circular objects
with known dimensions. The data obtained for correlation is shown
below:

Z distance (cm) 10 20 30 40 50 60 70
Blob Area (Pixels) 495 253 164 123 97 85 72

The relation obtained between object pixel area and z distance from
camera plane upon curve fitting is:

Z (m) =
55.4

Areapixel
(3)

The assumption that the motion of the ball will remain in a plane
parallel to the camera frame ensures that the value of Z will remain
fixed for a given target trajectory.

3 CONTROL LAW FOR IBVS
After object detection and feature measurement, a closed-loop con-
troller must be applied on the image features obtained.If

[ut
vt

]
de-

notes the feature vector of an image (coordinates of center of object
in image space) at time t, then we can define the error functions
as eu (t) = |ut − u0 | and ev (t) = |vt −v0 |, where u0 and v0 are the
desired feature values of u and v respectively.
PID is a popular closed-loop controller used in many applications.
It applies a correction to the proportional, integral, and derivative
error terms (P, I, and D respectively). The control equation is:

CV (control output) = −(Kp · e(t) + Kd · Ûe(x) + Ki ·

∫
e(t)dt) (4)

where Kp , Kd and Ki are the proportional, derivative and integral
constants respectively.
As explained in majority of the visual servoing literature such as
[6], PD controllers have a less settling time than PID contollers and
hence for tracking a continuously moving object, it is preferred to
use a PD controller i.e, remove the integral term completely. The
final PD control law can be written as ([7], [8]):

Ûu(t) = −[Kpu · eu (t) + Kdu ·
deu (t)

dt
] (5)

Ûv(t) = −[Kpv · ev (t) + Kdv ·
dev (t)

dt
] (6)

From Eq. 1, by considering the 2D motion of camera i.e, only Vx
andVy are mapped to image feature velocity, the following relation
is obtained:

Vx =
−z

λ
· Ûu; Vy =

−z

λ
· Ûv (7)

where λ is the focal length of camera and z is the Z estimate obtained
from the pixel area of blob, using Eq. 3. From equations 1-2 and
5-7, and by using the kinematic jacobian (i.e, relation between joint
velocities and end-effector velocity of robot), joint velocities can be
calculated for visual servoing (Ûq = J−1

v · ÛV).

Vision-based control to track a moving occluded object using Adaptive Kalman Filter AIR ’19, July 2–6, 2019, Chennai, India

PD Tuning. The PD gains Kp and Kd decide the dependence of
control output on the error function. After studying literature on
how PID/PD controllers are tuned, it was found that many prefer
to use a trial and error method to manipulate the gain values and
observe the control response of each trial to check for desired
behaviour (e.g. settling time, accurate convergence, overshoot, etc.).
Hence a similar approach was followed.

3.1 Shortcomings of using current model
After tuning the PD controller, the UR5 robot was able to perform
fast and smooth tracking. However, due to external factors such as
bad lighting condition or obstruction of another object, the blob
detection tends to fail frequently (Fig 3). In addition, the low FPS
(Frames Per Second) of the camera creates a unique problem: once
the detection is missed for a few frames, the object sometimes
moves out of the visible region of the camera if it is moving very
fast. This problem is being called as the out of view problem (Fig 2).
This leads to the abrupt stopping of the robot and complete failure
of tracking. In order to circumvent these (occlusion and out of
view) problems, an Adaptive Kalman Filter (AKF) was coupled with
the existing controller, which is a state estimator used to provide
reliable data in noisy environments. Implementation details are
explained in the next section.

Figure 2: Sequence of frames showing the ’Out of view’ prob-
lem. The right side (black & white) shows the detected blob
while the left side (RGB) shows the raw image in which ob-
ject is detected with a red circle. Although ball is still de-
tected in the first two images, image blur (due to fastmotion)
and sudden escape from the camera view leads to detection
failure.

Figure 3: Image frames showing the object being blocked by
the chair, similar to Fig.2. In the first image object is com-
pletely detected and hence no occlusion, while in the sec-
ond image object is partially visible so occlusion occurs and
in the last image no sight of the object so it is completely
occluded.

4 ADAPTIVE KALMAN FILTER
In order to create a robust tracking model that can handle the noise
and uncertainties of visual measurements, an Adaptive Kalman
Filter (AKF) was implemented on the image coordinate data u,v .
The following section discusses the basic equations related to a basic
Kalman Filter and compares the performance of two estimation
models selected from the existing literature.

4.1 Kalman filter Equations
The Kalman filter, as explained in [9], is a set of mathematical equa-
tions that recursively implements a predictor-corrector estimator
by minimizing the estimated error covariance in order to provide
new values for the state variables.
Let X (k) be the state of a discrete time-controlled process at time
tk , governed by the equations:

X (k) = F (k − 1) · X (k − 1) +W (k − 1) (8)

and Z (k) be the measurement of state, then:

Z (k) = H (k) · x(k) +V (k) (9)

where F (k − 1) is the state transition matrix, H (k) is measurement
matrix andW (k) andV (k) are the process and measurement noises
respectively. The noises are usually modelled as independent white
Gaussian noises with covariances Q(k) and R(k) respectively. Q, R
are the process noise covariance and measurement noise covariance
respectively. It is assumed that they remain constant for the given
time-step.
Let X (k/k − 1) be the a priori estimate i.e, prediction of state X (k)
using the measurements X (0), X (1) X (k − 1). The a priori and a
posteriori estimate errors are then defined respectively as:

E−(k) = X (k) − X (k/k − 1) (10)

E(k) = X (k) − X (k/k) (11)
where X (k/k) is the a posteriori estimate of state X (k). The a priori
error covariance and a posteriori error covariance are defined using
the above error terms respectively.
The kalman filter consists of two phases in order to update the a
priori and a posteriori terms (state and covariance): Prediction and
Correction (refer Figure 1):

Prediction. In the prediction step an a priori estimate is obtained
by forwarding the current state as shown:

X (k/k − 1) = F (k − 1) · X (k − 1/k − 1) (12)

A priori error covariance can then be written as:

P(k/k − 1) = F (k − 1)P(k − 1/k − 1)F (k − 1)T +Q(k − 1) (13)

Correction. The correction step acts as a feedback mechanism
by incorporating the actual measurement into the a priori estimate
X (k/k − 1) to obtain an a posteriori estimate X (k/k):

X (k/k) = X (k/k − 1) + K(k) · (Z (k) − H (k) · X (k/k − 1)) (14)

where K(k) is known as the Kalman gain given by:

K(k) =
P(k/k − 1) · H (k)T

H (k) · P(k/k − 1) · H (k)T + R(k)
(15)

A posteriori error covariance becomes:

P(k/k) = (1 − K(k) · H (k)) · P(k/k − 1) (16)

AIR ’19, July 2–6, 2019, Chennai, India K. Ramachandruni, S. Jaiswal, and S. V. Shah

Figure 1: Flowchart showing various Prediction-Correction steps of state estimation for visual data executed by an Adaptive
Kalman Filter.

These two steps are repeated for each time step.

Adaptive kalman filter. Adaptive Kalman Filter or AKF allows
estimation parameters of the Kalman filter to adjust automatically,
as shown in Fig. 1, where Z(k) and image features are used to update
the KF states.

4.2 Estimation models
In order to implement the adaptive Kalman filter for visual servoing
two models have been selected for comparison, after which one of
the models was implemented on the UR5 robot.

4.2.1 Model 1- Uniform Velocity model. This system was im-
plemented in [2] for tracking moving objects in videos. The system
state of model is defined as:

StateX (k) =

[
d(k)

d(k − 1)

]
(17)

where d(k) is image feature at time tk , in this case the image coor-
dinates u,v .
For a very short time interval T, velocity of the moving object is con-
sidered to be constant. The estimated feature can then be written
as:

d(k) = d(k − 1) + (d(k − 1) − d(k − 2)) (18)
State model is then represented by:

X (k) = F (k − 1)x(k − 1) +W (k − 1)

=

[
2 −1
1 0

]
·

[
d(k − 1)
d(k − 2)

]
+

[
W (k − 1)

0

] (19)

where F(k-1) =
[2 −1

1 0
]
.

Z(k) is taken as [d(k)] and H(k)= [1 0], giving:

Z (k) = H (k) · X (k) +V (k) = d(k) +V (k) (20)

Adjustment of process noise covariance and measurement noise
covariance using image features is explained below.

Occlusion Rate. As explained in [2], the occlusion rate is the ratio
of occlusion area (in pixels) in frame t to that in frame t − 1.

α(t) =

{
|
PN (t)

PN (t−1) − 1| if | PN (t)
PN (t−1) − 1| ≤ 1

1 if | PN (t)
PN (t−1) − 1| ≥ 1

(21)

where PN (t) and PN (t − 1) are the pixel number of the moving
object in frame t and t − 1, respectively. Referring to Figure 3, in
the first frame as the object is clearly visible, there is no occlusion
and hence αt = 0. In the second frame, as occlusion is observed,
αt < 1 and in the last frame, as object cannot be detected at all,

there is complete occlusion and αt = 1.
The occlusion rate can be used as a measure of noise covariance
as described in [2], where the measurement error is considered
directly proportional to the occlusion rate (more occlusion leads
to less accurate measurement). Hence the following estimation
parameters are defined:

R(t) =

{
α(t) if α(t) < α∗(t)
∞ else (22)

Q(t) =

{
1 − α(t) if α(t) < α∗(t)

0 else (23)

where α∗(t) is the threshold value of α(t).
In the case when α(t) exceeds the threshold (i.e. when object is

completely invisible) K(t) will become 0 (refer Eq. 15) and hence
the system will use the predicted value obtained from equation 19.
The final estimation equations can now be written as:

Prediction

1. X (k/k − 1) =
[
2 −1
1 0

]
·

[
d(k − 1)
d(k − 2)

]
2. P(k/k − 1) =

[
2 −1
1 0

]
· P(k − 1/k − 1) ·

[
2 −1
1 0

]T
+

[
1 − α(t) 0

0 1 − α(t)

]
Correction
1. K(k) = P (k/k−1)·[1 0]T

[1 0]·P (k/k−1)·
[1

0
]
+α (k)

2. X (k/k) = X (k/k − 1) + K(k) · (d(k) − d(k/k − 1))

3. P(k/k) = (1 − K(k) ∗
[1

0
]
) · P(k/k − 1)

where d is any coordinate of the image plane. By using AKF to
estimate both directions of motion we can predict its motion in
image plane.

4.2.2 Model 2-Mean adaptive accelerationmodel. Thismodel
was proposed in [4] as one of a number of dynamic models suit-
able for tracking maneuvering targets. This acceleration model is a
Singer model with an adaptive mean. While the singer model (used
in [3]) considers acceleration to be a zero mean first order Markov
process i.e, E[a(t + τ)a(t)] = σ 2 ∗ e−α∗|τ | , the mean adaptive accel-
eration model modifies the singer model to have a non-zero mean
of the acceleration satisfying the equation:

Ûa(t) = −α · ã(t) +W (t) or Ûa(t) = −α · a(t) + α · ā(t) +W (t) (24)

where ā(t) is the estimate of a(t) from all available online informa-
tion until time t .

Vision-based control to track a moving occluded object using Adaptive Kalman Filter AIR ’19, July 2–6, 2019, Chennai, India

(a) Uniform Velocity Model (b) Mean Adaptive Acceleration Model

(c) Uniform Velocity Model (d) Mean Adaptive Acceleration Model

Figure 4: Comparing linear(4a, 4b) and curvi-linear(4c, 4d) estimation performance between both the models under occlusded
motion. X and Y axis denote the image plane axes. The left image ismotion captured by the camera (image dimension 640x480).
Right image is the data output of Kalman filter, where the dimensions of the camera frame are shown using the four red dots
in the image (Kalman filter sometimes overshoots estimation data). Start position of the motion is labelled and visible motion
of the object is denoted by arrow lines. Occluded motions (object blocked from view) is shown using dotted arrow lines. Refer
Discussion section for more explanation.

The discrete-time system state model is given by:

X (k/k − 1) = Fa · X (k − 1/k − 1) +Ua · āk−1 (25)

where X (k) = [d(k), Ûd(k), Üd(k)]T is the state of system at time tk ,
d(k) being the image coordinates (u,v) and Ua is a matrix defined
to apply the effect of non-zero mean acceleration. From Eq. 24:

Fa =

1 T

α ·T−1+β
α 2

0 1 1−β
α

0 0 β

 , Ua =

T 2

2
T
1

 −

α ·T−1+β

α 2
1−beta

α
β

 and β =

e−α ·T .
Based on this model (similar to formulation in [3]), the process
noise covariance matrix is given by:

Q(k) = E[w(k)w(k)T] = 2 · α · σ 2
a ·

q11 q12 q13
q12 q22 q23
q13 q23 q33

 (26)

where:
q11 =

1
2·α 5 · (1 − β2 + 2 · α ·T + 2·α 3 ·T 3

3 − 2 · α2 ·T 2 − 4 · α ·T · β)

q12 =
1

2·α 4 · (β2 + 1 + 2 · β + 2 ·T · β − 2 · α ·T − α2 ·T 2)

q13 =
1

2·α 3 · (1 − β2 − 2 · α ·T · β)

q22 =
1

2·α 3 · (4 · β − 3 − β2 + 2 · α ·T)

q23 =
1

2·α 2 · (β2 + 1 − 2 · β)

q33 =
1

2·α · (1 − β2).
[3] also proposed an update rule for the acceleration variance σ 2

a :

σ 2
a = 2 ·

X (k/k) − X (k/k − 1)
T 2 (27)

By retaining the use of measurement noise error as occlusion ratio,
we have R(k) = α(k).

Mean Acceleration Estimation. As a modification to the mean
acceleration update rule proposed in [4], in the current implementa-
tion an exponential moving average (EMA, [10]) was taken instead:

āk+1 = η · (âk) + (1 − η) · āk (28)

where āk is mean of acceleration until time tk and âk is the online
information about current acceleration at time tk .
Though this update rule is similar to the acceleration update sug-
gested in [4] (i.e, āk+1 = β · âk + (1−β) · āk , β = e−α ·T), in the EMA
mean acceleration is not a function of the number of data points (i.e,
not a function of time) measured unto tk . For an application such as
continuously following a moving target, many data points will be
received and hence mean acceleration should not be a function of
time (recent values and old values must be given equal weightage
during update). Being a constant, the value of η has been manually
adjusted to give desirable results.

5 RESULTS & DISCUSSION
The figures 4a, 4b and 4c, 4d show a comparison between the esti-
mation provided by Uniform (constant) Velocity model and Mean-
Adaptive Acceleration model. Two different motions have been
generated with an occluded region in between the motion (object
is undetectable in this region) and both prediction models were
applied to compare their accuracy in predicting the object’s next
position.
As shown in the results (refer figures 4a, 4b and 4c, 4d), the main

AIR ’19, July 2–6, 2019, Chennai, India K. Ramachandruni, S. Jaiswal, and S. V. Shah

Figure 5: Series of frames showing performance of AKF with Mean Adaptive Acceleration model during occlusion. The top
row images show the green cap (target) being tracked by the robot end effector(red circle). The bottom row images shows the
camera feed from eye-in-hand camera mounted on UR5 arm (left images) and corresponding blob being detected from that
image (right images).

issue with the Uniform Velocity model is that the estimated posi-
tion points are highly overshot with a sharp linear trajectory, while
those of the Mean Adaptive Acceleration model are more dense and
a smooth trajectory is generated. Also, the estimation data given by
the Mean Adaptive Acceleration model during occlusion lies within
the camera’s field of view unlike that of the Uniform Velocity model
(much lower data overshooting as shown in 4, the four red dots in
right image represent the view of the camera). Though the exact
curvature of the trajectory is not perfect, the authors argue that for
a randomly generated motion which does not follow any particular
trajectory, it is impossible to predict that motion even for a human
observer.
Using the Mean-Adaptive Acceleration model, visual servoing was
carried out on the UR5 robotic arm. It was observed that the prob-
lems of occlusion and out of view were reduced in most cases, as
shown in Fig. 5. In this series of frames, the target object (green
cap) is being blocked from the camera’s view by the chair (in the
bottom row images blob is not detected during occlusion), how-
ever the robot is still able to follow the object due to data obtained
from the estimation model. Also, it is worth noting that significant
overshooting was not observed while estimating the ball trajectory
during occlusion.
By studying the various applications for which similar models have
been used([2] and [3]), it can be suggested that the Uniform Veloc-
ity model works better for applications where the acceleration of
motion is very low i.e, non-erratic and unidirectional motions. Also,
the advantage of Uniform Velocity model is that none of the param-
eters of the AKF require manual tuning. However, for accelerated
motions with randomly changing directions, it is better to use the
Mean Adaptive Acceleration model model and carefully tune its
constants (η and β) to achieve required accuracy.

6 CONCLUSION
An Adaptive Kalman Filter was used along with a closed loop PD
controller to perform a visual servoing task on a UR5 robotic arm
and its performance was studied. Mathematical models were for-
mulated for the estimation model used known as Mean-Adaptive
Acceleration model and it was compared with another existing
model (Uniform Velocity model) used for similar tasks.
In order to thoroughly improve the accuracy of the system, the fre-
quency of visual measurements needs to be improved. Frequencies

obtained using a high-speed camera (around 400 FPS) are generally
required for tracking and hitting a randomly thrown object (such
as a robot playing Table Tennis). With some modifications in for-
mulations the same AKF formulation can be improved to provide
information at a higher frequency than the incoming visual feed-
back. Also, the solution proposed in this paper can be implemented
using a high-speed camera to see whether there is any improve-
ment in performance as more image data will allow the AKF to
make more accurate predictions, especially during occlusion and
other cases of failed detection. Further, it is worth noting that as
the Kalman filter directly receives extracted coordinate features
from the image data, the solution proposed can be extended to
more complex 3-D objects as well provided the camera is able to
capture this information such as a stereo camera and there is a
feature extraction module that can extract raw image coordinates
from the data collected.

REFERENCES
[1] E. V. Cuevas, D. Zaldivar, and R. Rojas, “Kalman filter for vision tracking,” 2005.
[2] S.-K.Weng, C.-M. Kuo, and S.-K. Tu, “Video object tracking using adaptive kalman

filter,” Journal of Visual Communication and Image Representation, vol. 17, no. 6,
pp. 1190–1208, 2006.

[3] C. Liu, X. Huang, and M. Wang, “Target tracking for visual servoing systems
based on an adaptive kalman filter,” International Journal of Advanced Robotic
Systems, vol. 9, no. 4, p. 149, 2012.

[4] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part i. dynamic
models,” IEEE Transactions on aerospace and electronic systems, vol. 39, no. 4,
pp. 1333–1364, 2003.

[5] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
[6] M. Elena, M. Cristiano, F. Damiano, and M. Bonfé, “Variable structure pid con-

troller for cooperative eye-in-hand/eye-to-hand visual servoing,” in Proceedings of
2003 IEEE Conference on Control Applications, 2003. CCA 2003., vol. 2, pp. 989–994,
IEEE, 2003.

[7] Z. Qu, R.-q. Wen, X.-y. Wang, and B.-b. Zhou, “Image recognition and track-
ing algorithm based on pid fuzzy control,” TELKOMNIKA (Telecommunication
Computing Electronics and Control), vol. 14, no. 2A, pp. 403–412, 2016.

[8] I. Siradjuddin, L. Behera, T. M. McGinnity, and S. Coleman, “Image-based visual
servoing of a 7-dof robot manipulator using an adaptive distributed fuzzy pd
controller,” IEEE/ASME Transactions On Mechatronics, vol. 19, no. 2, pp. 512–523,
2014.

[9] G. Welch and G. Bishop, “An introduction to the kalman filter. department of
computer science, university of north carolina,” ed: Chapel Hill, NC, unpublished
manuscript, 2006.

[10] A. Raudys, V. Lenčiauskas, and E. Malčius, “Moving averages for financial data
smoothing,” in International Conference on Information and Software Technologies,
pp. 34–45, Springer, 2013.

	Abstract
	1 Introduction
	2 Feature extraction and Geometry
	2.1 Feature extraction from Image
	2.2 Camera Model and Interaction Matrix

	3 Control law for IBVS
	3.1 Shortcomings of using current model

	4 Adaptive Kalman Filter
	4.1 Kalman filter Equations
	4.2 Estimation models

	5 Results & Discussion
	6 Conclusion
	References

