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Abstract— This paper proposes an end-to-end self-supervised
feature representation network named Attentive Task-Net or
AT-Net for video-based task imitation. The proposed AT-Net
incorporates a novel multi-level spatial attention module to
highlight spatial features corresponding to the intended task
demonstrated by the expert. The neural connections in AT-Net
ensure the relevant information in the demonstration is ampli-
fied and the irrelevant information is suppressed while learning
task-specific feature embeddings. This is achieved by a weighted
combination of multiple intermediate feature maps of the input
image at different stages of the CNN pipeline. The weights of the
combination are given by the compatibility scores, predicted by
the attention module for respective feature maps. The AT-Net
is trained using a metric learning loss which aims to decrease
the distance between the feature representations of concurrent
frames from multiple view points and increase the distance
between temporally consecutive frames. The AT-Net features
are then used to formulate a reinforcement learning problem for
task imitation. Through experiments on the publicly available
Multi-view pouring dataset, it is demonstrated that the output
of the attention module highlights the task-specific objects
while suppressing the rest of the background. The efficacy
of the proposed method is further validated by qualitative
and quantitative comparison with a state-of-the-art technique
along with intensive ablation studies. The proposed method is
implemented to imitate a pouring task where an RL agent is
learned with the AT-Net in Gazebo simulator. Our findings show
that the AT-Net achieves 6.5% decrease in alignment error along
with a reduction in the number of training iterations by almost
155k over the state-of-the-art while satisfactorily imitating the
intended task.

I. INTRODUCTION

Industry 4.0 envisages the autonomous robots working
alongside the human worker in an unstructured and dy-
namic environment. One important requirement of such a
collaboration is to have robots with human like learning
aptitude, which enables them to learn from interactions
with the environment. The idea of such a futuristic setup
has been endorsed by the recent advancements in artificial
intelligence (AI). In this quest, reinforcement learning (RL)
and imitation learning [1], [2], [3] have gained significant
attention to make robots more intelligent. Imitation learning,
traditionally, has used specific and structured demonstrations
in terms of position and velocity in Cartesian / joint space
[4], [5], [6]. The demonstrations were generally provided
through kinesthetic teaching for a particular skill while
manually guiding the robot to perform a task and the motion
imitator/model was learned from the demonstrations. Though
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Fig. 1: Overview of the proposed AT-Net. The proposed method has two main
modules, namely convolutional feature encoder and multi-level attention module. The
convolutional encoder takes three images as input, the positive image, anchor image
and negative image and generates task specific feature representations with the aid of
the multi-level attention module. These feature representations are then trained using
metric loss objective.

these methods are computationally efficient and also acquire
the expert’s skills satisfactorily, they lack the advantages
of unsupervised methods and generalization capabilities.
Moreover, the human expert’s skill is not directly transferred
to the robot as the demonstrations involve manual operation
of the robotic system.

In this paper we present an imitation learning frame-
work that helps direct skill transfer from the expert to the
robot using unlabeled and unstructured video demonstrations.
These demonstrations can be a collection of multiple small
tasks1 involving manipulation, grasping, pulling, pushing
etc., thereby making them complex in nature. Thus, to make
this skill transfer successful, the learning agent must be able
to do the following: a) convert the demonstrations into view
point invariant states/abstractions where the states are more
tractable, b) understand the important aspects of the demon-
strations as image frames may contain information irrelevant
to the demonstrated task, c) understand the goal of the task
and d) imitate the task. Considering the above attributes,
we propose a visual feature representation network that
uses multi-view demonstrations to understand the intended
task. The proposed network employs a CNN architecture
to generate embedding vectors for each frame of a video
demonstration. Metric learning is used to bring concurrent
frames from different viewpoints together in the embedding
space while pulling frames occurring at different time-stamps
away from each other. However, this approach does not

1An example of such skill transfer can be the mopping task which is a
set of small tasks. The expert shows the robot through a video how to use
a mop to gather dust and push it into a dust collector.
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explicitly ignore irrelevant information that may be present
in the video frame such as viewpoint, background, clutter. In
order to be truly invariant, the image representation should
be focused on the useful parts of the scene which explain
the demonstrated task. We achieve this by introducing a
multi-level spatial attention module in the proposed feature
representation model shown in Fig. 1. The proposed feature
extraction module takes care of the first three attributes of
the learning agent stated earlier. The feature representations
or embeddings obtained from the network can then be
used to learn a control policy which imitates the task. The
control policy estimation is formulated as a RL problem
which exploits the learned embedding vectors. In our case,
the RL agent is trained using DDPG algorithm [7]. The
reward function of the RL training is designed such that
the executed policy drives the robot towards task completion
while imitating the expert.

Much work has been done in supervised approaches of im-
itation learning [8], [9], [10], where state-action trajectories
of the expert are recorded either from human demonstrators
or expert agents and the algorithms mainly try to replicate
these trajectories. In this regard, DQfD algorithm [11] is
popular as it was introduced to solve Atari games problem
by leveraging demonstration data. There are other methods
[12], [13] which takes inspiration from GANs and uses
adversarial losses to encourage the agent policy to closely
follow the expert policy. To transfer skills through limited
visual demonstrations, few-shot methods [14], [15] have also
been used. However these methods are unable to learn from
abstract demonstrations, such as YouTube videos. Recent
works [16], [17] have made significant strides in decoding
information from abstract visual demonstrations to tackle this
problem. [18] uses visual and audio signals as supervision
from a very small sample of YouTube videos of people
playing Atari games like PRIVATE EYE and MONTEZUMAS
REVENGE. In another work [19], video demonstrations taken
from an expert agent are fed to a discriminator along
with the imitating agent’s video input. The output of the
discriminator function is then sent as reward or penalty to
the RL agent. Still, these works are currently restricted to the
game domain and do not completely address the nuisance
variables of real-world video representations such as scale
and viewpoint. In this direction, Sermanet et al. [20] uses a
triplet loss based feature representation to imitate a pouring
task by considering temporal cues from multiple views as
the supervision signal without any external supervision. The
limitation is that this work considers the entire scene, which
makes the learning of the embedding vectors computationally
expensive.

In different contexts, differentiable attention mechanisms
have been studied in neural networks for image classification
and object recognition [21], [22], [23] as well as action
classification and video recognition [24], [25], [26]. Few
works also extend the attention concept to learning visuo-
motor policies [27] and improving deep metric learning [28].
By merging the concept of ‘attention’ with imitation learning,
the RL agent can be made free from the nuisance attributes

of the scene. Exploiting this concept, the proposed technique
is unique in the way that the multi-level attention module
attends to task-specific objects in the spatial domain without
any external supervision and extracts this information to
generate rich feature representations of the task demonstra-
tion. In addition, the proposed network does not require any
prior information about the task before learning the feature
representation and thus can be generalized to perform on
any task. Hence, the contributions made by this work can be
summarized as follows:

1) We propose a CNN based feature representation net-
work called Attentive-Task Net or AT-Net that incorpo-
rates multi-level spatial attention, which is incentivized
to amplify the relevant and suppress the irrelevant or
misleading information from visual data.

2) The proposed feature representation model is validated
using a liquid pouring task where the task imitation is
formulated as a reinforcement learning problem. The
RL agent uses standard DDPG algorithm to learn the
policy.

3) The proposed model reduces the alignment error by
almost 6.5% along with a reduction in the number
of training iterations by almost 155k over the state-
of-the-art. Several ablation studies are also performed
on different components of the network in order to
validate the proficiency of the generated feature em-
bedding using the proposed model.

The rest of this paper is organized as follows. Section II gives
a detailed explanation of the proposed approach and the RL
problem statement is defined in Section II-C. Experimental
setup and results are presented in Section III in which
the Gazebo simulation environment [29] and dataset are
introduced in Section III-A. Results obtained upon training
are discussed in Section III-B, Section III-C and Section III-
D. Finally, in Section IV conclusions are drawn from the
work presented.

II. PROPOSED APPROACH
We use time as a supervision signal across multiple

viewpoints to perform metric learning. As the time stamps
of concurrent frame in the videos are synchronized, the
embedding vectors learn what is common among different
looking images which are functionally similar, thereby learn-
ing features invariant of nuisance variables such as appear-
ance, background and other image related noise. In order to
make these embeddings more invariant, we use a multilevel
spatial attention module which collects information from
feature maps across different depths of the network and
highlights the regions among them which are important to
the demonstrated task. The spatial attention module helps the
network ignore information irrelevant to the task in order to
generate an embedding robust towards changing appearances
and background. This section first explains the working of
the spatial attention mechanism and structure of the overall
network followed by a discussion of why this mechanism is
successfully in attending to relevant information and ignoring
unnecessary details within the image. Thereafter, an RL
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(a) (b)

Fig. 2: An architectural overview of the proposed feature representation network. Fig a. shows the proposed network architecture AT-Net, which consists of a CNN pipeline
and three spatial attention sub-modules (Att1, Att2 and Att3). These sub-modules calculate the attention weight matrix of each intermediate feature maps (L1, L2 and L3
respectively) with respect to the final layer feature vector g. The weights are then multiplied with the intermediate feature maps to output the attention incorporated feature
vector. Fig b. shows the structure of the spatial attention sub-module consisting of an addition operation, a 1x1 convolution operation and a sigmoid activation function.

problem is formulated to solve an imitation learning problem
using the proposed architecture.

A. Spatial Attention Structure

The Multi-level Spatial Attention module is shown in
Fig. 2a. We use the Inception architecture [30] (initialized
with ImageNet pretrained weights) upto the layer ‘Mixed 5d’
followed by a few extra convolutional layers as the CNN
pipeline. Attention sub-modules extract information from
multiple layers of this pipeline to generate the required
embedding vector. These sub-modules are similar to the
ones used in [22], where a multilevel attention mechanism
was used for image classification and fine-grained object
recognition. Let the set of feature vectors extracted at a given
convolutional layer be written as Ls = {ls

1, l
s
2, ...l

s
n}, where

ls
i is the vector of output activations at the spatial location

i ∈ (1,n) in the convolutional layer s ∈ (1, ...,S). Also let g
denote the global feature vector, which is essentially the last
feature map in the network before the final output layer. In
order to incorporate attention into the global feature vector
g, we define a compatibility score as follows:

C(L̂s,g) = {cs
1,c

s
2, ...c

s
n} (1)

where L̂s is the set of vectors of Ls after being linearly
mapped to the dimensionality of g. We use the following
compatibility score to calculate the relative attention between
intermediate feature vector Ls and global feature vector g:

cs
i =< u, ls

i +g >, i ∈ {1...n} (2)

where u is the weight vector learned by a 1x1 convolutional
layer that takes the sum of the components as input and gives
the compatibility scores as output. The compatibility scores
are passed through a sigmoid function to give the normalized
compatibility scores As = {as

1,a
s
2, ...a

s
n} as shown in Fig. 2b.

These normalized compatibility scores will now function
as the attention weights for Ls and are used to produce a
single vector by element-wise averaging (gs

a = Σn
i=1as

i · ls
i ).

The multi-level attention module produces a vector gs
a for

each layer s and these obtained vectors are concatenated

to replace the original global vector g with the attention
incorporated global vector ga = [g1

a,g
2
a, ...g

n
a]. This is further

passed onto a fully connected layer to produce the final
embedding vector.

1) Metric learning: The embedding vectors generated
from the network architecture are trained using time-
supervised metric learning in order to make them invariant to
viewpoint, scaling and other pixel-level changes. We borrow
the definitions of anchor, positive and negative examples
from the triplet loss literature [31] to explain the training
strategy used in our case. The anchor and positive images are
defined as concurrent frames taken from different viewpoints,
and the negative image as a frame taken from a different
time-stamp and arbitrary viewpoint, thereby completing the
anchor-positive-negative triplet. In general, metric loss aims
to bring the embeddings of the anchor-positive pair closer to
each other and pull the embeddings of the anchor-negative
pair away. This is done to teach the representation network
to cluster samples of similar categories together and push
them away from samples belonging to different categories.
Hence, in our case, metric learning allows us to learn appear-
ance invariant and task specific feature representations from
unlabeled multi-viewpoint video data. Instead of using the
triplet loss, we choose to use the multi class N-pair loss [32]
as it allows comparison to multiple negative examples per
anchor-positive pair and is computationally more efficient.

B. Intuition towards using Attention for Representation
learning

To generate an embedding vector which can act as a
generalized and nuisance-invariant state representation for
training any reinforcement learning agent, it is necessary to
encode only those pixels from the video demonstration which
are relevant to the imitation task. In a standard CNN pipeline,
each layer contains a diverse range of image features and as
we go deeper into the network, these features tend to possess
more contextual information than spatial information [33].
Our multi-level spatial attention module takes advantage of
this behavior by allowing image patches from shallow layers
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(local feature vectors ls
i ) to directly contribute to the final

embedding vector in proportion to its compatibility with the
last layer feature map (global feature vector g). This also
means that we are incentivizing the shallow layers to focus
on learning those features which are contextually relevant to
the imitation task so that they will be embedded in the final
representation vector. In addition, similar to the case in [22],
there is a greater benefit of using layers relatively late in the
network as they are ‘relatively mature’ and more specific to
the task. The use of a multi-level module therefore allows us
to access the diversity of information available at different
spatial resolutions in the pipeline so that we can generate a
more comprehensive and detailed representation vector.

C. RL Framework for Task Imitation

In order to validate the efficacy of the proposed architec-
ture over the baseline architecture, we define an imitation
learning task to be solved by an RL agent using the em-
bedding vectors obtained from the network. The task is to
mimic the pouring action shown in a single expert video
demonstration taken from a customized Gazebo simulation
environment [29], shown in Fig. 3. The agent solving this
task must do so for any video demonstration irrespective
of the viewing angle or distance from which the video is
captured i.e. the RL agent must be robust towards scale and
viewpoint of the expert. We formulate this problem as a
standard Markov Decision Process (MDP) defined by the
tuple < S,A,R,T,γ > [34], which consists of the set of
states, set of actions, reward function, transition function
and discount factor respectively. The state representation
S of the agent is the embedding vector generated using
the image from the simulation environment along with the
robot’s current state (joint angles and velocities). The action
output A of the RL agent is the required joint velocities of
the robot. Reward R at time t is defined as:

Rt =−
∥∥Eenv(t)−Eexpert(t)

∥∥ (3)

where Eenv(t) denotes the current image embedding taken
from simulation environment and Eexpert(t) denotes the em-
bedding of the image in expert video demonstration at time
t. γ value is taken as 0.99. A model-free agent, DDPG
[7] is used to perform the imitation learning task in the
simulation environment because it provides a deterministic
output and is suitable for continuous action spaces. We also
use the Combined Experience Replay (CER) method for
storing experiences [35] as it helps in faster convergence by
mitigating the negative effects of a large replay buffer. The
method involves appending the most recent experience to the
sampled mini-batch from the replay buffer when training the
RL network. The expert video demonstration used to train the
agent is from a third-person view angle seen during training,
but the video itself was not used to train the networks.

III. EXPERIMENTS AND RESULTS

To evaluate the proposed network architecture, we com-
pare its performance to that of the Multi-view TCN architec-
ture [20], which is an appropriate baseline. We first compare

Fig. 3: Images from the Gazebo [29] environment used to replicate the pouring
experiment. Beads are being poured from a cup attached to the end-effector of a 6-DOF
articulated arm to another cup placed on the table. Videos are captured simultaneously
from the first-person view angle (left side image) which is not changed throughout
the dataset and the third-person view angle (right side images). Third person videos
are taken from a fixed set of yaw angles (viewpoint) and camera distances (scaling)
to introduce invariance in the data. The same environment is also used to train the
DDPG [7] agent.

both the network architectures when trained on the Multi-
view Pouring Dataset [20] by using the validation metrics
defined in [20], namely the temporal alignment error and
labeled classification error. We then test the proposed archi-
tecture on the task imitation problem formulated in Section
II-C by developing a simulation environment in Gazebo [29]
which replicates the pouring experiment performed in [20].
The performance of the RL agent is compared when using
either network to generate state representations. This section
presents the results obtained from both comparisons and
discusses them in detail.

A. Network training: Dataset and Validation metrics

The performance analysis of the proposed AT-Net ar-
chitecture is initially carried out on the publicly available
Multi-View Pouring dataset which is a collection of 235
multi-viewpoint video demonstrations of a person pouring
different liquids from one container to another. We use two
error metrics defined by [20] namely, the temporal alignment
error and labeled classification error, which measure the
semantic alignment of concurrent images across different
viewpoints in the embedding vector space. We also prepared
a dataset collected from a simple simulation environment that
we developed in Gazebo replicating the pouring experiment
performed in [20]. The environment is shown in Fig. 3, where
a 6-DOF robotic arm with an attached cup is pouring beads
into another cup. The two-view video dataset consists of
multiple pouring trajectories collected using random robot
and cup positions, thereby ensuring domain randomization
in the data. For each pouring demonstration, two cameras
are simultaneously recording the trajectory; one fixed camera
is from behind the robot (first-person view) and the other is
from a different angle facing the robot and table (third-person
view). The third-person video demonstrations are made in-
variant in scale and viewpoint by choosing a fixed set of
camera distance and yaw angle values. The collected dataset
consists of 212 expert pouring demonstrations in which 175
videos are used for training, 12 videos are used for validation
and the rest are left for testing. The validation video set is
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Network Architecture Training
iterations

Alignment
error

Classification
error

Multi-view TCN [20] 224k 17.5% 19.3%
AT-Net Att12 69k 14.1% 16.71%
AT-Net Att23 69k 13.0% 16.01%
AT-Net Att13 69k 12.2% 15.98%
AT-Net Att123 69k 10.9% 16.1%

TABLE I: Comparison between proposed AT-Net architecture and state-of-the-art
TCN architecture [20]. Two validation metrics defined by the latter are used to compare
the two methods and a significant improvement is seen in the proposed network. Att12
indicates that only the L1 and L2 attention maps are used to generate the embedding
vector. Att23 and Att13 similarly follow this notation and Att123 indicates that all
three attention maps are being used.

Network Architecture Training it-
erations

Alignment error

Seen Unseen

TCN (baseline architecture)
[20]

190.5k 7.86% 8.52%

AT-Net (proposed) 63k 4.30% 4.07%

TABLE II: Results obtained on training upon the custom Gazebo [29] pouring
dataset. The temporal alignment error is calculated for camera angles seen during
training (Seen) and new camera angles (Unseen). The proposed architecture AT-Net
performs better than the baseline architecture for both the Seen and Unseen camera
view angles.

made such that there exists at least one example from every
possible combination of camera distances and yaw angles to
have an accurate validation accuracy estimate. An additional
set of 75 videos is added to the training set consisting of
failed demonstrations such as incorrect pouring or toppling of
cup during demonstration. This set of failed demonstrations
is necessary as it provides the embedding network with a
complete range of possible events that may occur in the
environment [20]. We use the temporal alignment error as a
validation metric to determine accuracy of the network and
perform early stopping for both the proposed network and
TCN baseline architecture. Also, a few third-person video
demonstrations are taken from outside the fixed set of camera
configurations to evaluate the performance of the network for
unseen video angles.

B. Quantitative results

The quantitative results of our proposed method are tab-
ulated in Table I and Table II and compared with the
TCN baseline architecture. These results are obtained by
training on the open-source Multi-view Pouring dataset and
custom Gazebo pouring dataset respectively. It is clear from
Table I that the proposed method is able to outperform
the baseline method with an improvement of 6.5% in the
alignment error metric and 3.2% in the classification error
metric. In addition, the total number of iterations required for
training is reduced by 155k when compared with the baseline
method. The baseline requires 224k iterations to converge
while our method starts to diverge after 69k iterations. The
same trend can be seen in Table II where the proposed
method shows an improvement of 3.5% in the alignment
error metric for seen view angles and an improvement of
4.5% for unseen view angles. This proves that the attention
module is able to filter out the task-irrelevant information and

Network Architecture No. of pa-
rameters

Alignment
error

Classification
error

AT-Net 1082k 10.92% 16.1%
AT-Net (extended) 1580k 11.9% 17.01%
AT-Net (softmax) 1082k 13.6% 16.64%
AT-Net (Resnet) 1080k 13.1% 18.86%

TABLE III: Ablation study of the network using different network configurations.
AT-Net denotes the proposed architecture. AT-Net (extended) is similar to the proposed
architecture but with more convolutional layers. AT-Net (softmax) replaces the sigmoid
normalization with a softmax normalization. AT-Net (Resnet) is an architecture similar
in structure and number of parameters to the AT-Net and is used with a resnet pretrained
network.

aid the network to reach faster convergence. In addition, the
results display the robustness of the method toward variations
in the environment which were not shown during training
such as new view angles or camera distances.

C. Qualitative results

The attention maps (normalized compatibility scores) gen-
erated by our network from some of the images from the test
data of the Multi-view Pouring dataset are depicted in Fig.
4. These are visualized to understand where the network is
paying attention to while generating the embedding vectors.
We observe that the first layer attention weights (L1 attention
map) mainly highlight the edges of task relevant objects
present within the image such as the hand, liquid and
cup. The second layer attention weights (L2 attention map)
however focus on highlighting both the cups which are
involved in the pouring task. The attention weights from the
final layer (L3 attention map) highlight the central region in
which the actual pouring is taking place (or where pouring
will take place, in case of the images in row 3). In all the
attention maps, it is clearly visible that even though different
background objects are present they are ignored completely
and only the relevant regions of the image with respective to
the task are being attended to. The same holds true for the
attention maps generated from the Gazebo pouring dataset
images (last three rows of images). In addition, although
the attention maps of the last layer (last column in the Fig.
4) seem completely inactive in the simulated dataset, the
network still outperforms the baseline architecture. This is
because unlike real-world images, images from the simulated
environment do not contain much distortions or noise, and
therefore only two attention layers are required to extract a
rich feature representation from them. Furthermore, the at-
tention maps are able to highlight the last image whose view
angle was not seen during training. This supports the fact that
spatial attention improves domain diversity and allows us to
generalize to unseen variations in the environment [22], as
is also reflected in the quantitative results.

a) Ablation Study: We carefully designed this network
architecture by thoroughly experimenting with the design
such as using different combinations of layers for attention,
adding extra convolutional layers, changing the activation
function of attention layers and using a different pretrained
network for extracting initial feature maps. The results are
shown in Table I and III respectively. The analysis justifies
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Fig. 4: Attention weight maps generated by the multi-level spatial attention module
for multiple images. The last three columns correspond to the three attention maps
generated by the multi-level attention module. Top 3 rows of images are taken from
the Multi-view Pouring Dataset [20] while the bottom three rows are from the custom
Gazebo [29] pouring dataset. The fourth and fifth row images are from first-person
viewpoint and third-person viewpoint respectively. The sixth row image is taken from
a different view angle not seen during training.

our choice of this network configuration as the proposed
architecture.

D. Task Imitation from Video Demonstration

The DDPG [7] agent defined in Section II-C is trained
using both TCN and AT-Net architectures to compare their
performances. The agent is trained for 4000 episodes each
after which the accumulated reward converges and the task is
successfully imitated. Fig. 5 shows the accumulated reward
of the DDPG agent with time when using both the archi-
tectures. The graph indicates that using AT-Net framework
allows the RL agent to achieve better rewards (less negative
rewards) than when using TCN baseline architecture, even
though both the agents are trained using the same set
of parameters and same expert video demonstration. This
further strengthens the fact that our proposed network is able
to align the task representations in the embedding vector
space more meaningfully so that they can be used as state
representations for a RL or other imitation learning agent.

IV. CONCLUSION
The work proposes a self-supervised representation learn-

ing network called AT-Net that uses multi-viewpoint video

Fig. 5: Accumulated reward by DDPG [7] agent over time when trained using
both TCN baseline architecture [20] and proposed AT-Net architecture. The bold line
represents a moving average of the actual accumulated reward which is blurred. Both
the RL agents are trained using the same hyperparameters and the same expert video
demonstration was used. AT-Net trained agent achieves better accumulated reward than
the TCN trained agent.

demonstrations to generate a task specific embedding vector
for each frame in the demonstrated video. The embedding
vector is generated using a multi-level spatial attention
framework which captures information from different regions
of the input image via a CNN pipeline and highlights the
regions relevant to the task shown in the demonstrations.
This embedding is further trained using time as a supervision
signal across multiple viewpoints using metric learning. The
AT-net features along with joint positions and velocities of
the robot are then used to represent the states of the RL
agent. We formalize the attributes of the imitation learning
framework to make successful skill transfer from an expert
to the learning agent through video demonstrations. The
proposed architecture poses the stated attributes which endow
the learning agent to imitate the desired task. We compare
the performance of our network with that of the state-of-
the-art network TCN [20]. The results obtained demonstrate
that spatial attention deployed at multiple levels can improve
domain diversity and allow the network to generalize faster,
as is observed in the reduction of training steps. We also
show that the generated attention maps clearly highlight the
objects performing the pouring task while suppressing the
background. Further, we perform several ablation studies
to understand the impact of implementing spatial attention
across multiple levels and justify other network choices. The
future scope of this work includes improving the feature
representation of our network by providing video frames
from sequential time-stamps in order to exploit temporal
information such as velocity and acceleration. We will also
work towards performing imitation learning with these fea-
ture representations by training an RL agent for robotic
object manipulation using raw video demonstrations.
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